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I. Phys A: Math. Gen. 25 (1992) 3855-3872. Printed in the UK 

Semiclassical path representation of the Green function in 
one-dimensional multiple-we!! pntentia!s 

W T Strunz 
Fakulta fur Phpik, Nbert-Ludwigs-Univenit~t, I~ermnn-H~~der-Slrasx 3, 
D-7800 Freiburg i.Br, Federal Republic of Germany 

iieceivca 2.5 November i99i, in iinai form 2.6 Fcbrualy i99i 

AbslracL Using semiclassical approximations and graph-lheoretical concepu. a path 
representation of the energy-dependent Green function in a one-dimensional mulliple- 
well ptenlial is derived. Applying uniform semiclassical methods, lhis representation 
is valid lor energies dose to the barrier niaxima, where tunnelling and above-banier 
reflection are of importance. Semiclassical quantization is discussed and a closed path 
representation of the density of sales is derived. Applications to wavepacket dynamics 
and lo the quanlization of disordered syslems are presenled. 

1. Introduction 

Semiclassical methods in quantum mechanics make it possible to express quantum 
mechanical amplitudes in terms of the quantities characterizing the corresponding 
classical mechanics [1,2]. This provides an intuitive insight into the physics under 
consideration and very often the semiclassical approach is a valuable tool from a 
purely computational point of view, when other approximation methods fail. In this 
paper a one-dimensional multiple-well potential is investigated. New experimental 
developments in solid state physics (multilayer structures, superlattices) have renewed 
the interest in such iow-dimensionai systems i3,4j. 

The main result of this paper is a semiclassical path representarion of the energy- 
dependent Green function G E ( z , z ' ) .  For its derivation use is made of elementary 
graph theory and of the transfer-matrix method of one-dimensional semiclassical me- 
chanics. Therefore it is assumed that the potential V ( z )  may be divided into N 
classically allowed wclls where the JWKB approximation holds. Using uniform semi- 
ciassicai transfer-mairiccs, the rcjuiiing reprcscniaiion oi G, iiuiiis when E passes 
across any of the maxima of V ( z ) .  In this respect, the present results generalize mr- 
responding results based on the primitive semiclassical approximation, which break 
down for energies close to a barrier maximum. It should be mentioned, however, that 
these uniform results are not valid for encrgics close to the minima of V ( z ) ,  since 
the matching between two bdrricrs is perCoormed with the primitive JWKB approxima- 
LlU,, ,'I>,"= LllC WC,,. D'l>G" U,, L l l l J  Irprs.Jl;rlLoLrurl "I " E , " ,  *I ,, "lr ~CIIIIbI' laJIW, 

quantization is developed in two ways. Fiat, following the work of Gutmiller [5], 
Balian and Bloch [GI, Miller [7] and Berry [l,S], a closed-path representation of the 
density of states is derived. Then attention is turned to the derivation of a semi- 
classical quantization condition in terms of the contributions of semiclassical cycles 
describing the possible motions of the particle. 

.:-- :-*:A- .Le ...,. I, D.."*,, ^" .lr:- -" ....,... ~" .,.. :-" -c 0 I -  ,La on...:-l"*":..", 
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M applications showing the variety of phenomena which find a description within 
these concepts are prcsented. First an example from time-dependent quantum me- 
chanics is chosen, namely, the evolution of a wavepacket in onedimensional multiple- 
well potentials. The wavepackef aufocorrefufion funcfion is determined in a semiclassi- 
cal approximation. This is a convenient quantity in investigations of time-dependent 
phenomena [9]. 

As a second application, the density of states of a disordered system is determined. 
Such investigations are carried out to describe the electronic properties of disordered 
solids (liquid metals, amorphous substances, alloys) [10-12]. It turns out that disorder 
leads to an exponential suppression of long cycles. Thus, taking into account only the 
shortest qcles, the main features of the density of states are already reproduced. 

It is to be emphasized that the results of this paper are based only on the 
existence of transfer-matrices to determine the solution of Schrodinger’s equation 
with given boundary conditions inside a certain well. In this respect, the restriction to 
a semiclassical path representation can be abolished whenever exact transfer-matrices 
are available (e.g. in Kronig-Penncy-type potentials). For such model potentials the 
results are rigorous. 

2. Pnth representation of the Green function 

In this section a semiclassical expression for the time-independent Green function 
C,( I, d) solving the inhomogenous Schrbdinger equation 

of a one-dimensional multiple-well potential V(Z) is derived. This representation 
is unifornily valid if the energy passes across a barrier maximum. This goes beyond 
an asymptotic first-order h-expansion, which is not valid for energies close to the 
barrier maxima. As already mentioned in the first section, the results are not wlid 
for energies lower than the highest of the minima of V(z). 

The starting point is the transfermatrix method of semiclassical mechanics [1,2]. 
These so-called conncction formulae relate local semiclassical solutions on both sides 
of a barrier. Then it is shown how this result can be rcwritten as apalh representalion, 
using basic concepts of graph theory [13,14]. Based on a first-order h (classical) path 
representation of G, Gutzwiller (51 dcrivcd a closed-path representation for the 
density of states (sce section 3) for multidimensional systems which, however, does 
not take into account quantum-mcchanical tunnelling. Using complex paths, Balian 
and Bloch [6] developcd a so-called nirrll~le-scallcriflring expansion to obtain arbitrary 
higher-order h-corrections to C, in multidimensional systems. In this respect, the 
use of uniform semiclassical transfer-matriccs in the energy rcgion around the maxima 
may be viewed as a partial summation of Balian and Bloch’s expansion for G,. 

The potential V ( z )  considered hcre consists of N wells Separated by N - 1 
barriers (figure 1). For givcn energy E, the left (right) classical turning point of the 
nth well is denoted by z; (z;), respectively. For energies E above the nth barrier 
maximum V& = V(z iaX) ,  the two turning p in t s  become mmplex. However, the 
(real) above-barrier rellection point 5: as defined in appendix A allows one to fix 
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N 

2N 

Figure 1. (0) Mulliple-well polenlial; (b) corresponding weighted graph according 10 lhe 
adjacency mat& A. Some weighls to(i,.j) are indicaled. 

I" > -  - I"+' < = I:. If thc nth barrier is symmetric, one has z: E xiax for all energies 
E > V&. 

The semiclassical solution +(I) of Schrodlnger's equation for positions I well 
inside the j t h  well (2: 2 < z i )  reads [1,2] 

A- . w s n q 1  l e ( - )  = . /?.. IF- l f / - . ) l /h  & \va\,cnsmber znfi - $ ( q , x i )  = 
N "a"-., a\&.] V-PL- ~~ * \ * I 1 1  

Jz: dzic(z) is thc classical action from z, to z2 in units of h. The caefIicienu 
A , B  have to he dctermined by appropriate boundary conditions. As an exam- 
ple, in the first wcll (j = l), to cnsure cxponential decay for 2 -+ -m, one has 
(A, ,  B 1) - - C(e-i"/3,ei"/4) (C is a suitably chosen normalization factor). There- 
fore 

the well known JWKU solution. 

( A j , B j )  for Z< 

transfer-niaitix [1: 2!! i.e. 

Due to the linearity of the Schrddingcr cquation, the corresponding coefficients 
z: arc obtained lrom ( A , ,  E , )  with the help of a ( 2  x 2) 2 
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The matrix K(j,  c 1,) from 2: to z< is a composition of the elementary transfers 
through each well (matrices L) and through each barrier (matrices M), Le. 

K( j< -1,)=M(j,-( j- l )>).. .M(2<-1>)L(l ,  +I<) (2) 

with 

and 

Here, S, = S(z2,z-Y) is the classical action through the nth well, p, is the 
reflection amplitude and 4" is the scattering phase shift of the nth barrier. The 
semiclassical expressions for these quantities are obtained by mapping the barrier 
onto an inverse parabola (15,1] and arc listed in appendix A 

The energy-dependent Green function G E ( z ,  2') of equation (1) is determined 
with the help of two solutions +,(z),+>(z) of the Schrodinger equation fulfilling 
the boundary conditions +,(z)"'O and +>(z) - 0. Use is made of the 
representation [I61 

z - tm 

with zmin := min(z,z ' ) ,  zmsx := max(z,z') and the Wronskian 

W(+,,+>) = +<+; -+:*>. 

Assuming that I < z', and that r is situated in the well j (z< < z << z<) and 
z' in the well k ( j  < k), the quantities in equation (3) can be determined semi- 
classically with the given connection formulae. For this purpose, the transfer-matrix 
K(j, + 1,) (equation (2)) has to he determined and corresponding expressions for 
the matrices K ( k ,  t N,) and K(N, t l<) .  Letting 

and 

one obtains in semiclassical approximation 
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and 

with TI{. . .} denoting the trace of the 2 x 2 matrix. Then equation (3) reads 

As has been worked out by Miller [7] for the case N = 2, it is possible t o  
expand the quotient l/Tr{. . .) in (5) in (multiple) geometric series. Assuming that 
Vi:') << E (< V,,, and therefore taking into account only contributions of order 
(-)* (for j = k), each summand of the  series may be assigned to a path that 
passes back and forth in the first well, then tunnels and passes back and forth in the 
secG8d we!! befare it :.;:,ne!s back. 

Using the basic concepts of graph theory, however, (5) can be converted into 
a semiclassical path representation of the Green function for arbitrary N and all 
energies E >> Vi i0( i  = 1 , .  . . , N )  by expanding G, in a single (matrix) geometrical 
series. The main step is to combine a11 entries of the 2 x 2 transfer-matrices involved 
in equation (5) in a singlc ( 2 N  x 2 N )  matrix 

The four ( N  x N )  matrices A,, . . . ,A4 are defined as 

- 
s, = s, - i {d  2 " -1  + k )  (8) 

- 
~ ~ f i . . ~ r l  -,... L +knt c ,...... eort.,lr r~. ICC:, . , ,~  Il,-binn c r,.. o..nrn:nr c-- ..L ..,r YCIIIIL.", l Y C l l  ,,,a, &l n  app"Yc"c" L l l r  CIY.,.IICYI L I L L I Y I I  U" E", C"C16.L'" ,a, d""Ys. 

or far below the barricr maxima, since the phase shifts 4n-,,4n go to zero in these 
limits (equation (A3)). The phasc shirts imply that the time Tn = dS,/dE remains 
finite for energies close to a barrier maximum. This is in contrast to the classical 
orbiting time Tn = dS , , / dE  from E'' to z;, which tends to infinity for energies 
equal to the barrier maxima E = V:a2 or E = V&. 



3860 W T Strum 

With this ( 2 N  x 2 N )  matrix A, one obtains from equation (5) for the Green 
function for values 15 << I < z< and z: Q I' << I: 
G E ( z , z ' )  = - ip  [ k ( ~ ) k ( ~ ' ) ] - ' / ~  {[(U-d)-l]j,k ~ - i 3 ( z $ F ) + i F ~ z ~ + ' )  

- .  
h= 

e-iS[z<,=) ti3[=',z:) + [(U - A)- ' l j ,~+k 
I I/* *\-I1 ,-is[z,*<) tiS(=:.=') 

I \y -a l  I N + j , k  

+ I(U-A)-'liv+j,N+b e-i~[z,=:) +i3(z',z:)) , 

- 

- 

(9) 
Note that each of the four summands in (9) corresponds to one of the summands in 
equation (5). 

The equivalence of equations (5) and (9) can be shown with the derivation of 

In equation (5 ) ,  the step N + ( N  + 1) is performed by multiplying the transfer- 
matrices with an additional (2 x 2) matrix. By contrast, in (9), it is performed by 
enlarging the (2N x 2 N )  matrix A by two new rows and columns. 

The matrix A may be interpreted as the weighted adjacency matrix of a graph 
[14, U]. 'Ib become familiar with this terminology, basic definitions and concepts of 
glmplr L U C " 1 J  a L C  lWLC" U, appCLLYm U. ll.,lC, UJC w ,,,a.Uc U, L L I V  rur;r,r,ry ("J,, 

eq-uiva;errt (~w-o-~uiieifi~ora~j iec~uiiei,ce ieiaiiuns I"v' (iv' + i) for bOih equdii"ns, 

nrnih +ha--, "-A 1:rta.l :I nn~-.-..l:u D Unrn ..^- :I --A-  n C  +ha :>a-.&:&. ID,\  

[ ( l -d) - ' l jk  = 6jk + W(7j-k) (10) 
7 J - k  

to express the inverse (U - A)-' entering (9) as a sum of weights w ( 7 )  over certain 
paths y of the corresponding graph. In our case, the matrix A represents the graph 
D L l V W l l  "1 L L L C  " U L L U l L l  "L Ltgu'c 1. Ap"' 

connected vertices of the graph. Its weight ~ ( - f , , ~ )  is the product of the weights of 
all edges it consists of. These elementary weights of the edges are determined by the 
adjacency matrix, i.e. w( i , j )  = Aij. Notice that the series on the right-hand side 
of (10) is convergent for energies with Im( E) > 0 since the actions s, in (7) have a 
positive imaginary part too. The graph in figure 1 can be interpreted as a phase-space 
~ V L L L ~ L  U L  UK pusxuir; (~ur~rici i ing aiiu rcr i~~ur~g,  p u i >  aiuitg w i i i ~ i i  a x . i i i i u . m x d  

particle evolves, each edge weighted with appropriate phases and amplitudes. The 
upper edges (1,2) ,  . . . , (( N - l), N )  are edges of positive momentum. Along the 
lower edges, however, the motion has negative momentum. 

Now turning back to (9) and using (10) in each of the four summands one sees that 
(9) provides apafh representation of G,. The first summand in (9) is the contribution 

with positive momentum (vertex k). The additional factor e-i3(z$~z)ti3[r~+") fixes 
the actual starting and end point (z, z') instead of (z:, z:). Accordingly, the second 
summand is the contribution of all paths emerging from I with positive momentum 
(vertex j) and arriving at z' with negative momentum (vertex N + k). The third 
(fourth) summand is the contribution of all paths emerging from z with negative 
momentum (vertex N + j) and arriving at zi with positive (negativej momenium 
(vertex k, ( N  + k ) ) ,  respectively. 

. .  CL-..... :.. +La &-ti,.- -C fin..-- 1 A -.-A .. C-,.- ..-- I.... ' 
L l " L l l  "CILCA '2 to j is a seqiieiice of 

---.-- :. ̂C . L ^  _... :L.- ,...--- w - .  .__I _^O..._.\ I _ _ .  ...L:-L *^^^:^^ 

of all pa& eiiieigiiig :ioiii z with poe,ve fioiiiiiiiiiiii ;-*em jj aad aiiiving at z' 

Thus for energies with Im( E) > 0, equation (9) can be written formally as 

(11) G E ( Z , 2 ' )  = --[k(z)k(z')J-''Z iw W ( - / z + & ) .  

-rx-z,  
h2 
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Equation (11) is the desired path representation of the Green function in a multiple- 
well potential. Here, the summation is extended over all paths y,,,, which lead from 
I to 2' in the sense of the graph in figure 1, with corresponding weights w(yr3,,), 
given by the product of all coefficients Aij along the path y,,,,. In genelal, the 
weight of a path will be written as 

- 
~ ( y )  = ,4,ei(s1-m~7/2) (12) 

with the product of the reflection and transmission amplitudes 

N-1 

AT = n &(-)'" 
n=1 

the indices T, (1,) denoting the number of reflections (transmissions) at the lzth 
barrier. The sum of all modified actions of the path is s,, and m, denotes the 
number of reflections. 

The behaviour of these results as E passes across a maximum of V (  I) may be 
understood clearly by looking at the graph in figure 1. For energies E well above 
all maxima of V(I), all reflection amplitudes pi tend to zero. This implies that the 
weights of the inner edges of the graph tend to zero which means that these edges 
may be removed. Thus, the resulting graph represents a single large well. On the 
other hand, if E is well below all maxima, the graph splits into N disconnected 
pieces, since the weights of the horizontal edges tend to zero. The resulting graph 
represents N independent wells. More of these limiting behaviours will be discussed 
in section 4. 

It is worth noting that probability conservation leads to a node rule for each vertex 
i ( i  = 1 , .  .. , 2 N ) ,  i.e. 

2N E([ Aji I 2  - I Aij 1') = 1 - 1 = 0 
j:1 

in analogy to Kirchhoff's rule X I j  = 0 for each node in an electrical circuit. This 
results from the unitarily of the adjacency matrix A 

dtd= U. 

The representation (11) turns out to be useful for investigations in wavepacket 
dynamics (section 4), but also serves as starting point for a concise formulation of 
the semiclassical quantization of these potentials, as will be shown in the following 
sections. 

3. Density of states 

In this section the density of states d( E) Of a multiple-well system is considered by 
making use of the corresponding graph and its associated adjacency matrix A. In 
general, taking the trace of the Green function leads directly to the density of states. 
In a first-order fi-approximation it is therefore possible to express d( E) in terms 
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of closed classical paths of the (multidimensional) system. This has been worked 
out by Gutmiller and others [5,8].  Balian and Bloch [6] derived analogous (exact) 
results including complex closed paths. Miller and others [7,17,18] applied closed- 
path quantization to systems including tunnelling. In the present work, the density 
of states will be expressed in terms of closed paths of the graph (figure l ) ,  which will 
be applied to the quantization of disordered systems in section 5. lb determine the 
density of states 

C a  

d ( E ) =  x 6 ( E - E , )  
n = l  

the eigenenergies of the system being denoted by E,,, use is made of 

(13) 
1 

d ( E )  = --Im[Tr(GE)]. 
rr 

The integration Tr(GE) = J d z C E ( z , z )  can be carried out using (3) and the 
Schrodinger equation for $<,+>, leading to Tr(G,) = d / d E l n  [E'($<,$>)]. 
In the semiclassical approximation the Wronskian is given by (4). Similarly to the 
equivalence of (5) and (9), the Wronskian of (4) may be expressed using the (2N x 
2 N )  matrix A. This leads to 

) 
N-1  

E'($<,$>) = 2C,C,( n ( 1  -p ; ) - ' / 2e - 'S12  det( l l -A) (14) 

with 3 = 2 C i = 1  Si. For cnergies well above and well below all barrier maxima 
the scattering phase shifts vanish and one has 3 = 2 Si, the classical phase space 
volume of the system in units of h. One finds 

i= l  

N -  

Tr( G E )  = - d E  In (!(I - pf)- '12 det(ll - A )  

and from (13) 

d ( E )  = z ( E )  - 

Here, 
- 

- 1 d 3  T d ( E )  = -- = - 
2rrdE 2rrh 

denotes the average density of states. The oscillating part of the density of states 

can again be treated applying graph-theoretical concepts. 
?k(ln(B)) for a matrix B one obtains 

Using In[det(B)] = 

- 1  m 1  
In[det(ll- A)] = - -Tr[(A)"] = - - w(7) (17) m 

m=1 m = l  ,closed 
l_lli." 
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where use is made of the fact that (A"),, is equal to the sum of the weights of all 
closed paths from vertex k back to k of length Iy/ = m (equation (B2)). Now the 
quantitiy of central interest in (16) is expressed in terms of the closed paths y of the 
corresponding graph and their weights ~ ( 7 ) .  

The weight of the closed path y,,,,, = (k,k, . . . kmkc,) from k, back to IC, is 

(k,k,. . . k,) which are obtained from yk,-k,  by shifting the beginning vertex. All 
these closed paths represent what will be called the same cycle [y] of the graph. In 
general, a path y (171 = m) is a j-fold repetition of a shortest, so-called primitive 
closed path yp.  (IyPI = m/ j ) .  Therefore, the number Nry1 of different closed paths 
representing the same cycle (71 of length m is N[ ,  lypl = m/j .  Expressing the 
sum over all closed paths in (17) as a sum over cycl]es;one finds 

equal to the weight of the closed paths y,2-k2 = (k2k3.. . k,,,k,k2), . . . , y,,-,, - - 

For the second equation, the summation over all cycles [y] is replaced by a summation 
over all primitive cycles [yP] and their j-fold repetitions. Thus, from (M), (18) and 
(12), for energies with Im( E) > 0 the oscillating part of the density of states is finally 
given by 

Again, T,  = ti(dy,/dE) is the modified orbiting time and A; = (dA,/dE). The 
formal structure of (19) is equivalent to those obtained in a first-order h-expansion in 
(higher-dimensional) semiclassical mechanics [5,8,18], the classical orbiting time T, 
being replaced by the complex, modified time (T, - ihA!,/A,). This results from 
the uniform semiclassical approximation, also valid for energies close to the barrier 
maxima. 

In general, (19) is not suitable for the calculation of eigenenergies of a given 
multiple-well potential since, to arrive at a sufficent energy resolution, high frequen- 
cies (i.e. long cycles) have to be taken into account. In some cases, however, when 
high frequencies are suppressed (e.& because of a finite energy resolution of the 
detector or, equivalently, giving E a positive imaginary part) (19) will be a convergent 
series and a few short cycles will already give an accurate result. Another example is 
given in section 5, by quantizing a disordered multiple-well potential, where disorder 
leads to an exponential suppression of long cycles. 

4. Semiclassical quantization 

RI determine the eigenenergies of a given N-minima potential it is more convenient to 
find a semiclassical quantization condition, i.e. a function f N ( E )  having the property 
f,,,(E) = 0 if F is an eigenenergy of the SyStem. In one-dimensional systems the 
desired quantization condition reads W(+<,  +,)( E) = 0. Equation (14) shows that 
in semiclassical approximation, this is equivalent to the condition 

f N ( E ) = e - i S / Z d e t ( l l - d )  = O .  (20) 
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The factor ensures fN( E )  is real for real energies, which is comfortable 
from a computational point of vicw. In rcfcrcnce [19], Bogomolny derived a similar 
quantization condition for the energy levels of a bound system in a first-order h- 
approximation for the multidimensional case. The determinant in (20) could be 
directly computed with suitable routines. In our case a convenient way to determine 
f N ( E )  is to use the rccurrence relation 

The function f ( n = N )  = fN(  E )  is the quantization function of the N-minima poten- 
tial. 

However, it is desirable to link the quantity fN(E) to the cycles of the cor- 
responding potential graph (figure 1). This is achieved from (20) by a cycle inter- 
pretation of the definition of the determinant of a matrix B = (bi,); One has 
det(B) = E, u(n)blx( l )bzT~z)  . . . b,,(,), TT running over all permutations of the 
numbers 1 ,  . . . , n and ~ ( T T )  being its sign. A permutation n'may be written in cycle 
form 

n = (n I1  . . . n lm, )  ".(nil.. . n;",#) (1 < i < [ n / 2 ] )  

which means that T is a composition of i cyclic permutations such as nil -+ ni2 - 
.. .  - nlm, i rill. Thus any permutation n may be assigned to a set of i (prim- 
itive) cycles {[yi],[y2],. . . ,[yi])* of the graph with y1 = ( n l i  ... nl,,nl,) and 
corresponding identifications tor yz, . . . ,yi. Writing {. . . ) x  it is stressed that the 
set of cycles [yi], [yz], . . . , [ri] involved has to represent a permutolion T of the n 
numbers. Moreover, the contribution of this permutation to the determinant may 
be determined with the weights of the corresponding cycles of the graph. Letting 
B = (ll - A )  then, since bii = 1, bi j  = -Ai j  Cor i # j ,  one finds 

k 
~ ( ~ ) ' ~ 1 ~ ( 1 ) ' ~ 2 ~ ( 2 ) .  . . 6 ( 2 ~ ) ~ ( 2 ~ )  = ( - 1 )  w ( ~ i ) 4 r z )  .. . ~ ( 7 ; ) .  

Therefore, the quantization condition (20) may finally be written as 

(22) 
t [ 7 , 1 , . . . i h N l ~ r  

Starting with thc contribution '1' of the idcntity pcrmutation, one has to subtract 
the weights of all cyclcs [y] of the graph representing a cyclic permutation, then 
add the product of the weights of all pairs of cycles {[yl],[yZ]) of the graph which 
represent a permutation, and so on. For small N ,  (22) is easily evaluated (figure 1) 
as follows. 
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In the case N = 1, the only permutation of the MO numbers {1,2] corresponding 
to a cycle is 1~ = (12) and this gives 

f , ( ~ )  = e-1S/2(I - e ' ( s - x ) )  = 2 c o s ( ~ / 2 )  

which is equivalent to the Bohr-Sommerfeld quantization condition Sh = j p d q  = 

In the case N = 2, there are three permutations of the numbers {1,2,3,4} 
corresponding to cycles of the graph, namely (13), (24) and (1243). Moreover, the 
permutation (13)(24) is also represented - by the graph. The corresponding weights are 
read from the - _  graph, ~ ( 1 3 )  = peZ'(S1-" /2) ,  w(24) = pe2'(S2-n/2) and ~ ( 1 2 4 3 )  = 
(1  - p2)eZ1(S'tS'-*/Z). Therefore, the quantization function (22) reads 

f z ( E )  = e-'(F1t32){l - ~ ( 1 3 )  - w(24) - ~ ( 1 2 4 3 )  + w ( 1 3 ) ~ ( 2 4 ) }  

2n(n+ 1/2)h .  

- -  - - = e- t (s l t sd{ l  - pezl(s'-"/2) - pe31(S2-"/2) - (1 - p2)e21(S,tS2-*/z) 

+ p2e?'(7,tS,-~l I 
or equivalently (see also [2 ] )  

fz( E )  = c o s ( 3 ,  + 3,) + pcos(S ,  - 3?) 

A number of 12 permutations are represented by the graph in the case N = 
3, namely (14), (25), (36), (1254), (2365), (123654), (14)(25), (14)(36), (14)(2365), 
(25)(36), (1254)(36) and (14)(25)(36). 

For large N the contributions of an exponentially growing number of combina- 
tions of cycles have to be takcn into account in order to express the semiclassical 
quantization condition (20) in terms of cycles. 

In order to discuss various limiting behaviours of the quantization function 
f N ( E ) ,  (18) may bc cxponentiated leading to 

Thus an infinile product representation for the quantization function in terms of 
all primitive cycles of the graph is found. First, consider energies well above all 
maxima. In this case, as already mentioned in the second section, all inner edges of 
the graph vanish since the reflection amplitudes tend to zero. The resulting graph 
is the graph of a single well and the N-well result reduces to the Bohr-Sommerfeld 
quantization condition ol N = 1 with action S = Si. In the opposite limit 
Consider energies well below all maxima. Now the transmission amplitudes tend to 
zero and the N-minima graph reduces to N disconnected single-minimum graphs. 
The product over all primitive cycles in (23) reduces to the product of N single- 
Well quantization functions which means that f N (  E )  = f?( E)f?( E )  . . . E) .  
Further, consider the case of a single huge kth harrier, all other barriers being much 
smaller. Then for energies between thc smaller maxima and V& the transmission 
amplitude fl tends to zcro and the corresponding graph splits into MO pieces, 
representing the graphs of a k-minima and a ( N  - k)-minima potential. The product 
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over all primitive cyclcs in (23) splits into the two infinite products over the primitive 
cycles of the individual graphs. Therefore the quantization function may be written 
in the Corm f N (  E )  = fk( E ) f ( N - k l (  E ) .  Due to the uniformity of the connection 
fourmulae, A and therefore the whole graph interpolates smoothly between these 
limiting cases. 

Notice that (23) as dcrived is valid only for energies with a positive imaginary 
part-the infinite product is not convergent for real energies. Equation (23) is equal 
to the finite expression (22) according to an analytical continuation procedure. This 
can be achieved by the mechanism of the so-called cycle Llrpansion [20]. Fxpanding 

s l l  hint n fin;+o n i s m h m r  nf + ~ r m r  ~nnr-01 nnrl nnlii tho mn+r:hii+:nnc nf the  n o r m s i m r i - ~  U,. Y Y l  U ..L..Ll . .Y.II"II "L LU.111.1 -.,..1. ".,U Y."J L t . 1  L Y L I L . ~ " U , , " , . I  "L ...I pL,,..U,U,,",, 

cycles of (22) remain. In this contcxt, the weighted adjacency matrix A plays the role 
of the transfer operator [ZO]. 

5. Applications 

5.1. Wavepacket autocorrelation funcrion 

As a first application of the path reprcsentation concept, wavepacket dynamics in a 
multiple-well potential is investigated. A convenient way to exhibit the time depen- 
dence of a wavepacket Q ( t )  is to evaluate its autocorrelation function [9] 

4 2 )  = (*(O) l * ( t ) )  ' (25) 

The square of this [unction measures the degree to which the wavepacket at time t 
overlaps with the initial wdvcpackct at t = 0. In this section a semiclassical expression 
for a ( t )  in a multiplc-well potential is dcrivcd, based on the corresponding potential 
graph. It is assumed that  the initial wavepacket V, = V ( 1  = 0) is localized around 
the leftmost turning point .:(E) of a given mean energy (see upper right corner 
of figure 2). lb link the time evolution Q ( t )  = U ( t ) V ,  to the path representation 
derived in section 1 use is made of 

??l.erefnre, !he surncorre!a!inn function a(<) is the Fourier transform of the quantity 
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For the derivation of (27) again use is made of (10). The (energy-normalized) regular 
and irregular solutions @, +$ in semiclassical (uniform) approximation are given by 
[I. 21 

with ((2) := [3S(~! , ,z) /2]~/~.  The functions Ai(r ) ,  Bi(z) denote the regular and 
irregular Airy function [Zl]. Inserting (26) and (27) into (25) one arrives at 

Here, the first term 

ao(t) = 1 dEe""'l'' [ j  d r  / dr'Wi(z)W:( zmin)+$( zmax)W0(d)] (29) 

is the overlap of W ( t )  with for very short times (see figure 2(a)), which means 
before the wavepacket W ( l )  has left the region of Q". The second term in (28) is 
the sum of the contributions of all possible returns y,-l of the wavepacket to the 
starting region around z:. According to (12) and (27), the contribution a 7 ( t )  of a 
single path yl-l is given by 

/ d E l  < $?I@,, > I'A,(E)e-'("'-"~)I* ' (30) i " L V X / ?  aJ2)  = c-  

For a given time 1 ,  the stationary-phase condition for the energy integral in (30) 
reads 1 = f i (dS, /dE) = T7 so that only contributions of those paths yl-l whose 
(modified) orbiting time T;, equals 2 have to be taken into account. At least for 
short times, these are only a fcw paths, so that (28) provides a clear picture of the 
underlying dynamics. Care must be takcn that the integration range in (29) and (30) 
"-* L l Y L  G*LCC" L l l C  ,o,,gc ", va,rur,y U, ,,,= J J " M  IC, I Ic i3Cl lL~IIUII  VI "E' 111 prLrcula' ,  

the contributing energies have to be well above the highest of the minima of V(z). 
This can be achicvcd by a suitable choicc of the initial wavepacket Qv 

As an example, the dynamics of an initially Gaussian wavepacket in a double- 
minimum potential V(:c)  = Vn,,,[(z/zU)2-1]2 (see upper-right corner in figure 2(a)), 
centred at the Icftmost turning point of cnergy E = V,,, is considered. As the 
wavepacket evolvcs~ each time it passes the barrier it splits into a transmitted and 
reflected part, so that after some time the resulting autocorrelation function shows 
complicated interference patterns (figure 2(a)). In figure 2(b) the square of the 
single contributions U? of some of the shortest paths are shown, neglecting any 
quantum mechanical interferences. With increasing length of the paths yl , , ,  due to 
dispersion the contributions broaden. In figure 2(a) the square of the corresponding 
coherent sum (28) (full curve) together with a numerical evaluation of a ( l )  based on 
a spectral representation ( I I In  >= 

Ann.. "_t a"^a"rl +LA -.F...l:,,:+.. -r .L̂  _̂.L ^C fl T" .."-*:-..a"- 

>) 

a ( t ) = C / < i ~ l ~ , > I - e  7 - iE.1/6 

TI 
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(12431) (124312431) 
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m 
i (131) - +. 
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0 1 2 3 i 5 
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Figure 2. Square of llie aulooorrclalion funclion o ( i )  of a wavepacket in the double- 
mimimum patential shown in Ihc uppcr rig111 "er. (4) Coherent sum (28) (full a w e )  
and numerical evaluation at a ( l )  (broken curve); (b) single mnlribulions of the most 
imponanl slimes1 palhs. 

proken curve) is shown. With the help of ligure 2(b),  however, it is possible to 
identify peaks in la(t)12 (figure 2((r)) as coherent superpositions of a small number 
of returning paths ylUl of the wavepacket. In particular, the five-peak interference 
pattern around t % 2T131 is due to the coherent superposition of the WO mntributions 
a(12431) and a(13131)' 

5.2. Quanfizalion of disordered gwnrs 

In section 3 a closed-path representation (equations (U) ,  (19)) of the density of 
states d( E )  in a multiple-well potential, valid for energies well above the minima of 
V ( z ) ,  is derived. It is cspccially uscful whenever high frequencies (i.e. long Cycles) 
are suppressed. This is the case for the density of states of a disordered potential, 
modelling disordered solids (liquid metals, amorphous substances, alloys) [1@-12]. 
Here, for simplicity, the problem of spuliul disorder is considered. This means that 
the potential V ( z )  consists of idcntical barriers with random separations L;  (See 
upper-right corner of ligure 3). It is assumed that the separations L,  are identically 
distributed independently, according to a Gaussian function with mean value L ,  and 
width U ,  

Here, the quantity of intercst is the average density of states d, [12] in the limit 
of an infinitely long chain of barriers as defincd via 
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X 

Figure 3. Average density of states d,(E) according lo equation (32) for an infinile 
number of wells ( N  - m) with disorder of five per oent. The dotted C U M  indicates 
d(  E ) ,  the broken (lull) curve includcs all primitive cycles up to a length of 4 (20). 
?he black b a n  indicate Ihe positions of the allowed bands in the corresponding periodic 
(o = 0) po~ential. 

- 

Bking the average reduces to evaluating Fourier transforms of Gaussian functions 
and can therefore be carried out analytically. ?b determine the density of states for 
fixed N ,  one has to sum over all primitive cycles of the graph. However, taking the 
average over the separations Li  means that the contribution of a specific cycle is 
independent of its position along the graph. All translated cycles of the same shape 
carry the same weight. Since their number divided by N tends to unity for large N ,  
the summation over all primitive cycles and division by N in (31) may be replaced 
by a summation (C') over all translationally different primitive cycles. Therefore 

where r-/ = TT-ih[(A;/A7)-nx( n 7 k u ) * ] / ( 2 E ) ,  k = m / h  is the wavenumber 
inside a well and 7 1 ;  is the square sum of the numbers nq) of traversals through each 
well i, i.e. 71: = X ( ? L ~ ' ) ~ .  The summation in (32) is extended over all primitive 
cycles which are different under translations (E') and their multiple repetitions m. 
Comparing with the corresponding result for the periodic (U = 0) system, it is realized 
that introducing disordcr essentially means suppressing long cycles exponentially with 
a factor e-(1/2)(mn~ko)*,  Therefore, in evafuating the sum in (32), only the shortest 
cycles (small m ,  7 1  ) contribute significantly. Moreover, with growing disorder U, 
,=w*c, a,," IEWS,  LYLIGJ IT', I M Y T  LW YC L'lhC-I I  ' l,," aCCwYLII. 
&. * ^ _ _ I  .?" ... ̂ _  -.?,... ,.U, L .... " .- I.., +..I_"" :".- "̂ ,̂..."* 
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As an examplc, in figure 3 the average density of states dav( E )  in the case of 
five per cent disorder (m = 0.05L,) is shown. The barriers are piecewise parabolic 
(see upper-right corner in figure 3). The black bars indicate the positions of the 
allowed bands in the corrcsponding pcriodic (U = 0) potential. The dotted curve 
shows Z(E).  The broken and full curves show d,(E) according to (32). For the 
broken curve, all cyclcs up to length 4 (contributions of 2 ( ! )  primitive cycles) are 
taken into account. Thc lull curve shows (32) including all primitive cycles up to a 
length 20 (13083 primitivc cyclcs). Taking into account longer cycles does not change 
the results significantly. 

6. Conclusion 

In this paper a uniform semiclassical path representation of the energydependent 
Green function in a one-dimensional multiple-well potential has been derived. The 
key step is the replacement of the ( 2  x 2) translcr-matrices of semiclassical mechanics 
by a single ( 2 N  x 2 N )  matrix A, characterizing the whole system. Interpreting A 
as the weighted adjacency matrix of a graph, it has been shown that this approach 
provides a path rcprcscntation of GE(z ,d ) .  The corresponding graph may be 
interpreted as the semiclassical phase-space portrait of the system. Based on this 
representation of C E ( z ,  z'), a closed-path representation of the density of states has 
been derived. Further, the semiclassical quantization condition may be expressed in 
terms of selected combinations of cycles of the graph (permuralion cycles), generalizing 
the Bohr-Sommerfcld quantization applicable 10 the case N = 1. 

?ko applications, the semiclassical wavepacket autocorrelation function and the 
density of states of a disordered potential demonstrate the usefuiness of this approach 
for different phenomena and for a wide range in the number of wells. 

Appendix A. Results from uniform semiclassical mechanics 

The uniform formulae for the barricr rcllcction cocllicicnt and scattering phase shift 
can be found by mapping the barrier onto the inverse parabola [15,1]. For energies 
E < V,,, = V(zmax) one has two real turning points z,,x<. For energies E > 
V,,,, however, there arc two complex-conjugate turning points z+,z-. 

For E > V,,,, the rcal above-barrier rellection point zr is implicitly defined via 

with (complex) wavcnumber k( Z) = J 2 m [  E - V (  z ) ] / h .  

via the l unndhg i n r e p l  
The semiclassical reflection amplituc p and phase shift 4 of a barrier are defined 
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Appendix B. Basic graph-theoretical concepts 

Basic definitions and concepts of graph theory may be found in [13,14]. Afnite, 
directed graph G = (V, E) consists of a set of vertices V = {l, . . . , n) and a set 
of ordered pairs E = { ( i , j ) ,  . . .} the (directed) edges of the graph. A path y;,j 
of length m (written as Iyi,jl = m) which joins the vertices i and j is written as 
yi,j = (ik, . . . k,,,-lj).  The pairs ( i ,  k , ) ,  (k l ,  ICz ) ,  . . . , ( k , , - , , j )  have to be edges 
of the graph. Moreover, y ie j  is called closed, if i = j. 

A weigfifed graph is characterized by additional (complex) weights w( i, j )  of the 
edges ( i ,  j). It can be represented hy its weighted adjacency matrix A, which is defined 
via A . .  = w ( i , j )  if ( i , j )  is an edge of the graph. The matrix element di j  is set to 
zero if the edge (i, j )  of the graph is missing. The common adjacency motrir used in 
elementary graph theory is given by unit weights, w ( i ,  j )  = 1 if ( i , j )  E E. Finally, 
the weight ~ ( y ~ , ~ )  of apofh is the product of the weights of the edges of the path, 

' I  

4 7 .  ' - I  .) = w(i3 k i ) w ( k i , k z ) .  , . 4 k m - 1 , j )  

The weighted adjacency matrix A can be used to determine sums of weights of 
paths. Therefore, recall the definition of matrix-multiplication, 

( A m ) . .  :J  = 2 A i k , A k , k ,  . . . A  k, , ,_ , j .  (B1) 
k , ,  ..., k m - t = l  

A summand in (Bl) is non-zero only if the corresponding path yi,j = 
( i k ,  . . . k m - l j )  of length m exists in the graph. In this case the summand is equal 
to the weight of the path. Therefore, 

(d")ij = (82) 
T.- j  

l Y , - > l = m  

the summation being extended over all paths yi,j of length m. The sum of the 
weights of all paths yi,j is given by 

71-j m=1 

In section 2 use is made of this equivalence to express the inverse of the matrix 
(U - A) as a sum over paths of the corresponding graph. 
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