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Abstraet.  Using semiclassical approximations and graph-theoretical concepts, a path
representation of the energy-dependent Green function in a one-dimensional multiple-
well potentiat is derived. Applying uniform semiclassical methods, this representation
is valid for energies close o the barrier maxima, where tunnelling and above-barrier
reflection are of importance. Semiclassical quantization is discussed and a closed path
representation of the density of states is derived. Applications to wavepacket dynamics
and 1o the quantization of disordered systems are presented.

1. Introduction

Semiclassical methods in quantum mechanics make it possible to express quantum
mechanical amplitudes in terms of the quantities characterizing the corresponding
classical mechanics {1,2}. This provides an intuitive insight into the physics under
consideration and very often the semiclassical approach is a valuable tool from a
purely computational point of view, when other approximation methods fail. In this
paper a one-dimensional multiple-well potential is investigated. New experimental
developments in solid state physics (multilayer structures, superlattices) have renewed
the interest in such low-dimensional systems [3, 4],

The main result of this paper is a semiclassical path representation of the energy-
dependent Green function Gg(z, '), For its derivation use is made of elementary
graph theory and of the transfer-matrix method of one-dimensional semiclassical me-
chanics. Therefore it is assumed that the potential V{z) may be divided into N
classically allowed wells where the JWKB approximation holds. Using uniform semi-
classical transfer-matrices, the resulting representation of (g holds wiien £ passes
across any of the maxima of V(z). In this respect, the present results generalize cor-
responding resuits based on the primitive semiclassical approximation, which break
down for energies close to a barrier maximum. It should be mentioned, however, that
these uniform results are not valid for energics close to the minima of V(x}, since
the matching between two barriers is performed with the primitive JWKB approxima-
tion inside the well. Based on this representation of Gg{z,z'), the semiclassical
quantization is developed in two ways. First, following the work of Gutzwiller [5],
Balian and Bloch [6], Miller (7] and Berry [1,8], a closed-path representation of the
density of states is derived. Then attention 5 turned to the derivation of a semi-
classical quantization condition in terms of the contributions of semiclassical cycles
describing the possible motions of the particle.

0305-4470/92/133855 +18%04.50 © 1992 IOP Publishing Lid 3855
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Two applications showing the variety of phenomena which find a description within
these concepts are presented. First an example from time-dependent quantum me-
chanics is chosen, namely, the evolution of a wavepacket in one-dimensional multiple-
well potentials. The wavepacket autocorrelation function is determined in a semiclassi-
cal approximation. This is a convenient quantity in investigations of time-dependent
phenomena {9].

As a second application, the density of states of a disordered system is determined,
Such investigations are carried out to describe the electronic properties of disordered
solids (Jiquid metals, amorphous substances, alloys) [10-12], It turns out that disorder
leads to an exponential suppression of long cycles. Thus, taking into account only the
shortest cycles, the main features of the density of states are already reproduced.

It is to be emphasized that the results of this paper are based only on the
existence of transfer-matrices to determine the solution of Schrodinger’s equation
with given boundary conditions inside a certain well. In this respect, the restriction to
a semiclassical path representation can be abolished whenever exact transfer-matrices
are available (e.g. in Kronig-Penncy-type potentials). For such model potentials the
results are rigorous.

2. Path representation of the Green function

In this section a semiclassical expression for the time-independent Green function
Gg(z,z') solving the inhomogenous Schrodinger equation

(~3m g7 + V(@) = £) Ginl ) = (2 = #) M

Imdx?

of a one-dimensional multiple-well potential V() is derived. This representation
is uniformly valid if the energy passes across a barrier maximum. This goes beyond
an asymptotic first-order A-expansion, which is not valid for energies close to the
barrier maxima. As already mentioned in the first section, the results are not valid
for energies lower than the highest of the minima of V(z).

The starting point is the transfer-matrix method of semiclassical mechanics (1, 2].
These so-called connection formulac relate local semiclassical solutions on both sides
of a barrier. Then it is shown how this result can be rewritten as a path representation,
using basic concepts of graph theory [13, 14]. Based on a first-order A (classical) path
representation of G Guuzwiller [5] derived a closed-path representation for the
density of states (sce section 3) for multidimensional systems which, however, does
not take into account quantum-mechanical tunnelling. Using complex paths, Balian
and Bloch {6] developed a so-called muliiple-scattering expansion to obtain arbitrary
higher-order h-corrections to Gy in multidimensional systems. In this respect, the
use of uniform semiclassical transfer-matrices in the energy region around the maxima
may be viewed as a partial summation of Balian and Bloch’s expansion for Gg.

The potential V{z) considered here consists of N wells separated by N — 1
barriers (figure 1). For given encrgy E, the lcft (right) classical turning point of the
nth well is denoted by =7 (21 ), respectively. For energies E above the nth barrier
maximum V.2, = V(z% ), the two turning points become complex. However, the
(real) above-barrier reflection point x7 as defined in appendix A allows one to fix
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Figure 1. {(g) Multiple-well potential; (b) corresponding weighted graph according ta the
adjacency matrix A. Some weights w(i, j) are indicated.

zl = 2%t = 27, If the nth barrier is symmetric, one has z* = «J,, for all energies
The semiclassical solution w(x) of Schridinger’s equation for positions z well

inside the jth well (2], < = < 21) reads [1,2]

1 Ceind o _iglmd
P(a) = (ActSE2®) 4 Benis(elm))
VE(x)
‘A‘S nenal Yy — Ml E V(a5 i the wavenumber and S{w. ».}y —
HOWG, r\a\d;} — V ‘-}Ill_d ¥ \W}jl e ny [ 1L VLA VA LW AR el AL L/\‘I./‘I’ “,2} —

"2 dwk(z) is the classical action from z, t0 z, in units of A. The coefficients
A, B have to be dctermined by appropriate boundary conditions. As an exam-
ple, in the first well (7 = 1), to cnsure exponential decay for & — —oo, one has
(Ay, B)) = C(e '"/% ¢i"/*) (C is a suitably chosen normalization factor). There-
fore

COS[S($1<,$)~7T/4] for :1:1<<<:1:<<:t:1>

Wle) =

?—uo
BE

the well known JWKB solution.

Due to the linearity of the Schrddinger cquation, the corresponding coefficients
(A;, B;) for a:*’< & @ < @, are obtainced from (A, By) with the help of a (2 x 2)
transfer-matrix [1,2], ie.

(5) = e =10(5):

H
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The matrix K(j. — 1.) from z. 10 :c is a compaosition of the elementary transfers
through each well (matnces L) and through cach barrier (matrices M), Le.

K(j( — 1<) = M(J( —(Jj- 1)))"'M(2< — l>)L(1> A 1<) (2

with

and
e"'ién _ipn
M((n+ 1) —ny)= (1-p2)" 1/2( i, eitn ) .

Here, S, = S(z%,z%) is the classical action through the nth well, p, B the
reflection amplitude and ¢, is the scattering phase shift of the nth barrier. The
semiclassical expressions for these quantitics are obtained by mapping the barrier
onto an inverse parabola (15, 1] and arc listed in appendix A.

The energy-dependent Green function Gg(«x,z’) of equation (1) is determined
with the help of two solutions v (), %, (x) of the Schrodinger equation fulfilling
the boundary conditions ¥ (2)*==70 and ¥, (z)"=5°0. Use is made of the
representation [16]

-'u 1"’) (xmm)w>($max
W W, vy) @)

:= max(x,z’) and the Wronskian

Gplz,z )'

. o .
with =, := min(z,z’), &,

W(?‘b<,¢>) = 1fJ<’lfJ’> - 1.!')'{1;');. .

Assuming that = < 2/, and that 2 is situated in the well j (¢} < =z <« =) and
z' in the well & (j € k), the quantities in equation (3) can be determined semi-
classically with the given connection formulac. For this purpose, the transfer-matrix
K(j — 1.) (equation (2)) has w0 be determined and corresponding expressions for
the matrices K(k, — N, ) and K(N, ~1.). Letting

AN emir/4
()i 055

. Jdrf4

Y i c
(5) = ks = 0 ()

one obtains in semiclassical approximation

and

b (z) = (A etiSEe) LA, S} for o e el

C.

7R=)

, C,
Yy (z') = \/’:(__

{ le—HS(z‘),x )+ K e—-lS(:r:,,:r:)} for :r‘i (:L"((:l‘j;



Green function in 1D multiple-well potential 3859

and

W(ve,v,) = 200, e [keN, =1 (1 1] @

with Tr{.-} denoting the trace of the 2 x 2 matrix. Then equation (3) reads

'i:

I‘( ]

Gp(z,2) = Lo (k(2)k(=))

2 ] .
x S {Apk,elESL eSS 2 ))}/Tr[K(N> 1) (: _1,)] .
m,n=1
®)

As has been worked out by Miller {7] for the case N = 2, it is possible to
expand the quotient 1/Tr{---} in (5) in (multiple) geometric series. Assuming that

Vni,lnz) <€ E <« V,,, and thercfore taking into account only contributions of order

(/1 - p%)? (for j = k), each summand of the serics may be assigned to a path that
passcs back and forth in the first well, then tunnels and passes back and forth in the

cacnnd wall hafare it tnunnels hark
auLAALU Wou OurUre L dulificvis Gacr.,

Using the basic concepts of graph theory, however, (5) can be converted into
a semiclassical path representation of the Green function for arbitrary N and all
energies £ Vi (i=1,...,N) by expanding G in a single (matrix) geometrical
series. The main step is o combine all entries of the 2 x 2 transfer-matrices involved
in equation (5) in a single (2N x 2N) matrix

A= %) ®

The four (N x N) matrices A,,...,.A, arc defined as

(-Al)ij = 6;’3‘—1 \/1 - 0F et

—_ ,‘(_S“_TI'-’)
(-Az)i;‘ = 55;‘ p; €

= (7}
(As)i; = 65 picy el(Si=7/2)
FE Y - £ - 3—‘
Ak = 41y 1~pi, ¢
To simplify the notation, modified actions
gn = Sn - %{qﬁn—] + qb'u} (8)

nra Adafinmad Ak thar O annenanhne tha rlaceiral antinn O frv anmormiac far
alc uc uupu, SucCn tnat O APPIUGLILILY UL Wd3SRal avlivil oy, ior Cilvl givy lai auuvc

or far below the barricr maxima, since the phase shifts ¢, _,, ¢, go 10 zero in these
limits (equation (A3)). The phasc shilts imply that the time T, = d§,/d E remains
finite for energies close to a barricr maximum. This is in contrast to the classical
orbiting time 7, = d5, /dE from «% to =T, which tends to infinity for energies

equal to the barrier maxima £ = V0" or = VI .

™
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With this (2N x 2N) matrix .4, one obtains frorn equation (5) for the Green
function for values ', < z < 2%, and % « 2’ « =&

ip n- - -i5(z% ,z) +i5(z% 2’
Gr(z,z') = 33 [k(2)k(e)] 72 {[(1 — A)71]; 5 e ) 1560

+[(1 = A7y €7 4SS

L oAl ~i8(m,el) 15,2
TUE-A) N4 k€ > <
(L= A g e S0 45y ©

Note that each of the four summands in (9) corresponds to one of the summands in
equation (5).

The equivalence of equations (5) and (%) can be shown with the derivation of
¢quivalent {two-dimensional) recurrence refations N — (¥ 4 1) for both equations,
In equation (5), the step N — (N 4 1) is performed by multiplying the transfer-
matrices with an additional (2 x 2) matrix. By contrast, in (9), it 5 performed by
enlarging the (2N x 2N) matrix .4 by two new rows and columns.

The matrix .4 may be interpreted as the weighted adjacency matrix of a graph

[14,15]. To become familiar with this terminology, basic definitions and concepts of
gra mh thanr: ara Lotad in nv\r\nnr‘cv T TIa e minda Af tha idantie: D2y
Bl p b LML Y alb HbilAL L appPeliula D, Ll\alU, Us€ 1S fadec O1 ine luCllll.Ly \DJ},
-1 —_—
(21— A4) ]jk-5jk+ Z w(’Yj.-.k) (10)
ik

to express the inverse (1 — A4)~! entering (9) as a sum of weights w{~) over certain
paths ~ of the corresponding graph. In our case, the matrix A represents the graph

txre v

shown in the bottom of figure 1. A paih Vi fiom veriex ¢ {0 j is & sequence of
connected vertices of the graph. Its weight w(~,_,;) is the product of the weights of
all edges it consists of. These elementary weights of the edges are determined by the

adjacency matrix, ie. w(i,5} = A;;. Notice that the series on the right-hand side
of (10) is convergent for energies with Im( £) > 0 since the actions 5 in (7) have a
positive imaginary part too. The graph in figure t can be interpreted as a phase-space
partralt of the possible (tunnelling and reflecting) pauta along which a semiclassical
particle evolves, each edge weighted with appropriate phases and amplitudes. The
upper edges (1,2),...,((N — 1), N) are edges of positive momentum. Along the
lower edges, however, the motion has negative momentum.

Now turning back to (9) and using (10) in each of the four summands one sees that
(9) provides a path representation of G B The first summand in (9) is the contribution

Af all mnthe amarscins Fram b B W g S IS e -t ing at o'

Ul all }Jdula blll\-lgllls 1iuvill £ WlLl.l pUblllVC lllUlllCllLulll ‘VCI. WA JJ dllu dlllVlllE av o
with positive momentum (vertex k). The additional factor e~i$(=%@)+i5(=:2") fixes
the actual starting and end point (z, '} instead of (z’,, =% ). Accordingly, the second
summand is the contribution of all paths emerging from « with positive momentum
(vertex 7) and arriving at =’ with negative momentum (vertex N + k). The third
(fourth) summand is the contribution of all paths emerging from z with negative
momentum {vertex N + j) and arriving at x’ with positive (negative) momentum
(vertex k, (N + k}), respectively.
Thus for energies with Im{ E) > 0, equation (9) can be written formally as

Gp(z,8) = A (k(2)(@)] 7 Y wlpmnr)- ay

Yr—z!
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Equation (11} is the desired path representation of the Green function in a multiple-
well potential. Here, the summation is extended over all paths +__, .. which lead from
« to 2’ in the sense of the graph in figure 1, with corresponding weights w(~v,_ ),
given by the product of all coefficients .4;; along the path ~,_ ... In gencral, the
weight of a path will be written as

w(v) = A,eSr=mam/2) (12)

with the product of the reflection and transmission amplitudes

H oo 1_pn)tn

the indices =, (1,,) denoting the number of reflections (transmissions) at the nih
barrier. The sum of all modified actions of the path is 5., and m, denotes the
number of reflections.

The behaviour of these results as E passes across a maximum of V(z) may be
understood clearly by looking at the graph in figure 1. For energies F well above
all maxima of V' (z), all reflection amplitudes p; tend to zero. This implics that the
weights of the inner edges of the graph tend to zero which means that these edges
may be removed. Thus, the resulting graph represents a single large well. On the
other hand, if E is well below all maxima, the graph splits into NV disconnected
pieces, since the weights of the horizontal edges tend to zero. The resulting graph
represents N independent wells. More of these limiting behaviours will be discussed
in section 4.

It is worth noting that probability conservation leads to a node rule for each vertex
i(i=1,,..,2N}, te.

aN
Z(IAJ'; P—1A; P )=1-1=0
=l

in analogy to Kirchhoff’s rule 37 I, = 0 for each node in an electrical circuit. This
results from the unitarity of the adjacency matrix A

.AT.Az 1.

The representation (11) turns out to be usefu] for investigations in wavepacket
dynamics (section 4), but also serves as starting point for a concise formulation of
the semiclassical quantization of these potentials, as will be shown in the following
sections.

3. Density of states

In this section the density of states d( E) of a multiple-well system is considered by
making use of the corresponding graph and its associated adjacency matrix 4. In
general, taking the trace of the Green function leads directly to the density of states.
In a first-order A-approximation it is therefore possible to express d( E) in terms

W™
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of closed classical paths of the (multidimensional) system. This has been worked
out by Gutzwiller and others [5,8]. Balian and Bloch [6] derived analogous (exact)
results including complex closed paths. Miller and others [7,17, 18] applied closed-
path quantization to systems including tunnelling. In the present work, the density
of states will be expressed in terms of closed paths of the graph (figure 1), which will
be applied to the quantization of disordered systems in section 5. To determine the
density of states

o
d(E)=)Y §(E-E,)
r=1
the eigenenergies of the system being denoted by E_, use is made of
d(E) = —%Im[Tr(GE)] : (13)
The integration Tr(Gy) = fdaGg(x,2) can be carried out using (3) and the
Schrodinger equation for v, 1, leading to Tr(Gg) = d/dEIn [W(v¥, ¥ )]
In the semiclassical approximation the Wronskian is given by (4). Similarly to the

equivalence of (5) and (9), the Wronskian of (4) may be expressed using the (2/V x
2ZN) matrix A. This leads to

W(¢<,¢>)=zc<c>(ﬂ(1 —1/2 =35/2 Qet(1 — A)) (14)

with § = 22‘ . S;. For energies well above and well below all barrier maxima
the scattering phase ‘shifts vanish and one has S = 2 Y~ S;, the classical phase space
volume of the system in units of A. One finds

N-1 _
Tr(Gg) = 75 in ( [L (- o) 7 dertal - )
=1

and from (13)

d(E):E(E)——%Im(d—Eln[det(]l .A)]) (15)
Here,

- 1dS T

WE) = 52 3F = 2nh

denotes the average density of states. The oscillating part of the density of states
1 d 6
OSC(E)_—;IIH a'—E-,]H[det(]l—"A)] (1 )

can again be treated applying graph-theoretical concepts. Using In[det(B)] =
Ti(In{ B)) for a matrix B one obtains

o0

In(det(1 — A)] =~} —le’l‘r[(A)m] - Z Y w(y) (A7)

m=1 m-l + closed
|+=m
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where use is made of the fact that (A™),, is equal to the sum of the weights of all
closed paths from vertex k back to k of length |y| = m (equation (B2)). Now the
quantitiy of central interest in (16) is expressed in terms of the closed paths ~ of the
corresponding graph and their weights w(-y).

The weight of the closed path ~, . = (k;k, ...k k) from k;, back to k; i
equal to the weight of the closed paths v, ., = (kyky ...k kiky), oy g, =
(kpky -« .k, } which are obtained from +, _ ;. by shifting the beginning vertex. All
these closed paths represent what will be called the same cycle [y] of the graph. In
general, a path v (|v| = m) is a j-fold repetition of a shortest, so-called primitive
closed path 4P, (|%P| = m/j). Therefore, the number N\, of different closed paths
representing the same cycle {v] of length m is N[,y]] = |¥P| = m/j. Expressing the

sum over all closed paths in (17} as a sum over cycles, one finds
1
In[det(L — )] =~ Y =w(7) = 3 Inf1 - w(~P)]. (18)
(7] (¥

For the second equation, the summation over all cycles [y] is replaced by a summation
over all primitive cycles [+P] and their j-fold repetitions. Thus, from (16), (18) and
(12}, for energies with Im( E') > 0 the oscillating part of the density of states is finally
given by

1 Gl H Af = m _im(§,— Ld .
d. (E)= ﬁRe[ (T,, _lﬁA_:) E(Av) eim(Sy—mym/2)| (19)
[ m=1

34|

Again, T = A(dS, /dE) is the modified orbiting time and A, = (dA. /dE). The
formal structure of (19) is equivalent to those obtained in a first-order A-expansion in
(higher-dimensional) semiclassical mechanics 3, 8, 18], the classical orbiting time Tv
being replaced by the compler, modified time (T,w —1kAL /A, ). This results from
the uniforrm semiclassical approximation, also valid for energies close to the barrier
maxima.

In general, (19) is not suitable for the calculation of eigenenergies of a given
multiple-well potential since, to arrive at a sufficent energy resolution, high frequen-
cies (ie. long cycles) have to be taken into account. In some cases, however, when
high frequencies are suppressed (e.g. because of a finite energy resolution of the
detector or, equivalently, giving E a positive imaginary part) (19) will be a convergent
series and a few short cycles will already give an accurate result. Another example is
given in section 5, by quantizing a disordered multiple-well potential, where disorder
leads to an exponential suppression of long cycles.

4. Semiclassical quantization

To determine the eigenenergies of a given /N -minima potential it is more convenient to
find a semiclassical quantization condition, i.e. a function fy ( E) having the property
fn(E) = 0if E is an eigenenergy of the system. In one-dimensional systems the
desired quantization condition reads W{(v ., ¥ )( £} = 0. Equation (14) shows that
in semiclassical approximation, this is equivalent to the condition

Fn(E)=e"5/2det(1l— 4) = 0. (20)

™
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The factor e™'*/% ensures fy(E) is real for real energies, which is comfortable
from a computational point of vicw. In reference [19], Bogomolny derived a similar
quantization condition for the energy levels of a bound system in a first-order A-
approximation for the multidimensional case. The determinant in (20) could be
directly computed with suitable routines. In our case a convenient way to determine
fn(E) is to use the recurrence relation

(fn) 15 (pn_l +eS (1-p, )1 - ez‘g")) (fn—l) @1

gn Pn_y (1-p,_1) 9n_1

with starting value

(fl) _ ( ‘2cos(§1) )

g9/ \exp{-iS,}/°

The function f,, .y, = fx(E) is the quantization function of the N.minima poten-
tial.

However, it is desirable t0 link the quantity f(E) to the cycles of the cor-
responding potential graph (figure 1). This is achieved from (20) by a cycle inter-
pretation of the definition of the determinant of a matrix B = (b;;). One has
det(B) = 3. a(w)b,,(l)bz,r(z). .. '.bn'.'r‘('n.)’ 7 running over gll permuta.tions.of the
numbers 1,...,n and o(x) being its sign. A permutation = may be written in cycle
form

T=(ny g ) (g o) (1gig[n/2])

which means that = is a composition of i cyclic permutations such as n;; — n,, —
T My, T Thus any permutation m may be assigned to a set of ¢ (prim-
itive) cycles {[v],[va],---.[¥]}5 of the graph with v, = (ny,...ny, ny) and
corresponding identifications for =,,...,%y;. Writing {---}, it is stressed that the
set of cycles [v],[¥:],.--,[7;] involved has to represent a permutation = of the n
numbers. Moreover, the contribution of this permutation to the determinant may
be determined with the weights of the corresponding cycles of the graph. Letting
B = (1 - A) then, since b;; = 1,b;; = ~A;; for 1 £ j, one finds
(M0 r1y0ar(ay -+ - Banyr(any = (=D w(r)w(g) ..o wl).

Therefore, the quantization condition (20) may finally be written as

InE)=e 1= win+ Y wln)w(n)

(%)= {772l =
— (=1 Z w(’yl)...w(‘yN)}. (22}
{Ivlseenlrn)} =

Starting with the contribution ‘1’ of the identity permutation, one has to subtract
the weights of all cycles [+] of the graph representing a cyclic permutation, then
add the product of the weights of all pairs of cycles {{+,],[v.]} of the graph which
represent a permutation, and so on. For small N, (22) is easily evaluated (figure 1)
as follows.
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In the case ¥ = 1, the only permutation of the two numbers {1,2} corresponding
to a cycle is w = (12) and this gives

FU(E) = e S/ (1 — 5T} = 2 cos(5/2)

which is equivalent to the Bohr-Sommerfeld quantization condition Sk = § pdg =
2x(n+4 1/2)k

In the case N = 2, there are three permutations of the numbers {1,2,3,4}
corresponding to cycles of the graph, namely (13), (24) and (1243). Moreover, the
permutation (13)(24) is also represented by the graph. The corresponding weights are
read from the graph, w(13) = pe®51=7/0] (24} = pe¥(52-7/D and w(1243) =
(1 — p*)eZ(51+5:-7/1) Therefore, the quantization function (22) reads

Fo( E) = e~ i31452) (1 — 0(13) — w(24) — w(1243) + w(13)w(24)}
= e-i(§1+§,;{l _pezi(E—r/z) _ pezi(E,-wfz) —-(1- pz)ezi(§1+§,—w/2)

+ p2e2i(_§;+§g-——7r}}
or equivalently (see also [2])
fo( E) = cos(S, + S,) + peos(5, - 5,).

A number of 12 permutations are represented by the graph in the case N =
3, namely (14), (25), (36), (1254), (2365), (123654), (14)(25), (14)(36), (14)(2365),
(25)(36), (1254)(36) and (14)(25)(36).

For large N the contributions of an exponentially growing number of combina-
tions of cycles have to be taken into account in order to express the semiclassical
quantization condition (20) in terms of cycles.

In order to discuss various limiting behaviours of the quantization function
Fn(E), (18) may be exponentiated leading o

In(E) = B2 T] 1 = w(+®)]. (23)

{+¥]

Thus an infinite product representation for the quantization function in terms of
all primitive cycles of the graph is found. First, consider energies well above all
maxima. In this case, as alrcady mentioncd in the second section, all inner edges of
the graph vanish since the reflection amplitudes tend to zero, The resulting graph
is the graph of a single well and the N-well result reduces to the Bohr-Sommerfeld
quantization condition of N = 1 with action § = }_S;. In the opposite limit
consider energies well below all maxima. Now the transmission amplitudes tend to
zero and the N-minima graph reduces to N disconnected single-minimum graphs.
The product over all primitive cycles in (23) reduces to the product of N single-
well quantization functions which means that fy(E) = f{(E) fP(E) ... fNYE).
Further, consider the case of a single huge kth barrier, all other barriers being much
smaller. Then for encrgics between the smaller maxima and VX, the transmission

amplitude /1 — p? tends to zero and the corresponding graph splits into two pieces,
representing the graphs of a &-minima and a (N — &)-minima potential. The product
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over all primitive cycles in (23) splits into the two infinite products over the primitive
cycles of the individual graphs. Therefore the quantization function may be written
in the form fy(E) = fi(E}fin_zy(£). Due to the uniformity of the connection
fourmulae, A and therefore the whole graph interpolates smoothly between these
limiting cases.

Notice that (23) as derived is valid only for energies with a positive imaginary
part——the infinite product is not convergent for real energies. Equation (23) is equal
to the finite expression (22) according to an analytical continuation procedure. This
can be achieved by the mechanism of the so-called cycle expansion [20]. Expanding

—_ P
[T -w6M=1-Swem + 5 wiDuwtd) - @4
[vel [v*] [ FLE)
a“ hnt a finita numher nf torme cancel and nnly tha eantrihntinne Af the namantating
Ak WWE O LILILW BAWMERIU/ %Wl VI MWl O wldllWwl Al UlllJ Rl RAFLILL JLPWILIVA LT WL blkWw yhl’ll“‘““u"
cycles of (22} remain. In this context, the weighted adjacency matrix A plays the role

of the transfer operator {20].

5. Applications

5.1, Wavepacket autocorrelation function

As a first application of the path representation concept, wavepacket dynamics in a
multiple-well potential is investigated. A convenient way to exhibit the time depen-
dence of a wavepacket W(£) is to evaluate its autocorrelation function [9)

a(1) = (V(0)|¥ (1)) - (25)

The square of this function measures the degree to which the wavepacket at time ¢
overlaps with the initial wavepacket at ¢ = 0. In this section a semiclassical expression
for a(t) in a multiple-well potential is derived, based on the corresponding potential
graph. It is assumed that the initial wavepacket W, = W(¢ = @) is localized around
the leftmost turning point =X (£) of a given mean energy E (see upper right corner
of figure 2). To link the time evolution W(t) = U(t)W¥, to the path representation
derived in section 1 us¢ is made of

1 o0 . .
Uty = ;n/ dE e (EHOAG . o . (26)
27 J_ o
Therefore, the autocorrelation function «(t) is the Fourier transform of the quantity
(U, |Gel¥,) = fdn;/d:v’ V()G g(z, 2 )¥y(z').
The function ¥(z) is localized around xk, thus for z,z’ =~ z¥, in (3) one has to
fall back on uniform approximations for ¢, ¥,. Then, instead of (9) one finds for
—o <z gy
GE(SC,.’D’) = —-Q‘ITi{'ler;(wm-m)dJié(Em“) + Z w(7!~1)¢?(xmin)w?(rmax)} .

i—1

@7
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For the derivation of (27) again use is made of (10). The (energy-normalized) regular
and irregular solutions %, 3% in semiclassical (uniform) approximation are given by

[1.2]
we =2 ( ,f((f))g)w Ai(-£(2))

2 ( &(x) \M*

WM ) — ll’.\ VO e S I = LY S T A R |
'V(\"“)"" 52 \L(I)Ej 21*‘“\ SLlA )] TRl Ta L) )

with &(z) := [35(z% ,2)/2}*/3. The functions Ai(z), Bi(z) denote the regular and
irregular Airy function [21]. Inserting (26) and (27) into (25) one arrives at

a(t) = ag(t)+ > a (). (28)
Here, the first term
a,(t) = dee-iE'/“ U d;sjdm'q;g(m)w(mmm)wﬁ(mmax)wg(x')] (29)

is the overlap of ¥(t) with ¥, for very short times (see figure 2(a)), which means
before the wavepacket W{t) has left the region of ¥, The second term in (23) is
the sum of the contributions of all possible returns ~,_,, of the wavepacket to the
starting region around . According to (12) and (27), the contribution a,(t)ofa
single path ~,_,, is given by

a.,(t) = ¢~ imaT/2 /dEI < If)fl‘yg > |2A,Y(E)e_i(Et'_ﬁ§'*)/h . (30)

For a given time (, the stationary-phase condition for the energy integral in (30)
reads { = A(dS,/dE) = _.r so that only contributions of those paths -,_, whose
(modified) orbiting time 7' 4 equals ¢ have to be taken into account. At least for
short times, these arc only a few paths, so that (28) provides a clear picture of the
underlying dynamics. Care must be taken that the integration range in (29) and (30)
does not exceed the range of validity of the path representation of Gz. In particular,
the contributing encrgies have to be well above the highest of the minima of V{(z).
This can be achieved by a suitable choice of the initial wavepacket W,

As an example, the dynamics of an iritially Gaussian wavepacket in a double-
minimum potential V (x) =V, [(x/2y)*-1)? (sce L upper-right corner in figure 2(a)),
centred at the leftmost turning point of cnergy 5 = V,,, is considered. As the
wavepacket evolves, each time it passes the barrier it splits into a transmitted and
reflected part, so that after some time the resulting autocorrelation function shows
complicated interference patterns (figure 2(w)). In fligure 2(b) the square of the
single contributions «., of some of the shortest paths ,_,, are shown, neglecting any
quantum mechanical interferences. With increasing length of the paths v, _,,, due to
dispersion the contributions broaden. In figure 2(g) the square of the corresponding
coherent sum (28) (full curve) together with a numerical evaluation of a(t) based on
a spectral representation (H|n >= E |n >)

al{t) = Z [< nj¥, > |2e Ent/h
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Figure 2, Square of the autocorrelation function a(t) of a wavepacket in the double-
mimimum potentiat shown in the upper right comer. (@) Coherent sum (28) (full curve)
and numerical evaluation of a(f) (broken curve); (b) single contributions of the most
importanl shortest paths.

{broken curve) is shown. With the help of ligure 2(b), however, it is possible to
identify peaks in |a{t)|* (figure 2(a)) as coherent superpositions of a small number
of returning paths v,_; of the wavepacket. In particular, the five-peak interference
pattern around ¢ = 275, is due to the coherent superposition of the two contributions
81231y AN B(y331)-

5.2. Quantization of disordered systems

In section 3 a closed-path representation (equations (15), (19)) of the density of
states d{ E) in a muitiple-well potential, valid for energies well above the minima of
V(z), is derived. It is especially uscful whenever high frequencies (i.e. long cycles)
are suppressed. This is the case for the density of states of a disordered potential,
modelling disordered solids (liquid metals, amorphous substances, alloys) [10-12].
Here, for simplicity, the problem of spatial disorder is considered. This means that
the potential V(x) consists of identical barricrs with random separations L; (see
upper-right corner of figure 3). It is assumed that the separations L; are identically
distributed independently, according to a Gaussian function with mean value L and
width o,

1 2
L. - __._c_(llﬂl[(bl"LU)/U} .
P = Torot
Here, the quantity of interest is the average density of states d,, [12] in the limit
of an infinitely long chain of barriers as defincd via
(d(E))

(B = i S e
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Figure 3. Average densily of states da( E) according 1o equation (32) for an infinite
number of wells (N — oc) with disorder of five per cent. The dotted curve indicates
( E), the broken (full) curve ingludes all primitive cycles up to a length of 4 (20).
The black bars indicate the posilions of the allowed bands in the corresponding periodic
(o = 0) potential.

Taking the average teduces to evaluating Fourier transforms of Gaussian functions
and can therefore be carried out analytically. To determine the density of states for
fixed N, one has to sum over all primitive cycles of the graph. However, taking the
average over the separations L; means that the contribution of a specific cycle is
independent of its position along the graph. All translated cycles of the same shape
carry the same weight. Since their number divided by N tends o unity for large N,
the summation over all primitive cycles and division by N in (31) may be replaced
by a summation (5_) over all transtationally different primitive cycles. Therefore

T,

d 2nh

(E)=

av

(= -
+ _1_ Re iL* z 7., A:i-eim.(g.,—m-,vr/‘?)e—(if?)(mn,ko’)g} (32)
[v¥] m=l1
where =, =T ~ih[(A’ /A ) =m{n ko) /(2E), k = /2ZuE [k is the wavenumber
inside a well and .2 is the square sum of the numbers n( ) of traversals through each
well i, ie. n? = Z(n‘;’)z. The summation in (32) is extended over all primitive
cycles which are diffcrent under translations (3_") and their multiple repetitions m.
Comparing with the corresponding result for the periodic (o = 0) system, it is realized
that introducing disorder esscntially means suppressing long cycles exponentially with
a factor e~(1/2)(mnyke) Therefore, in evafuating the sum in (32), only the shortest
cycles (small m,n ) contribute significantly. Morcover, with growing disorder o,

ey Tag (D01 hasn o talea smEn anamst

IUWUI anu leul \.yut-a 17r J ndave o 0e tdKeh IR0 account.
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As an example, in figure 3 the average density of states d,,(E) in the case of
five per cent disorder (o = 0.05L,) is shown. The barriers are piecewise parabolic
(see upper-right corner in figure 3). The black bars indicate the positions of the
allowed bands in the corrcsponding periodic (o = 0) potential. The dotted curve
shows d( E). The broken and full curves show d,, (%) according to (32). For the
broken curve, all cycles up to length 4 (contributions of 2(!) primitive cycles) are
taken into account. The full curve shows (32) including all primitive cycles up to a
length 20 (13083 primitive cycles). Taking into account longer cycles does not change
the results significantly.

6. Conclusion

In this paper a uniform semiclassical path representation of the energy-dependent
Green function in a one-dimensional multiple-well potential has been derived. The
key step is the replacement of the (2 x 2) transfer-matrices of semiclassical mechanics
by a single (2N x 2/N) matrix 4, characterizing the whole system. Interpreting A
as the weighted adjacency matrix of a graph, it has been shown that this approach
provides a path representation of Gg(z,2’). The corresponding graph may be
interpreted as the semiclassical phase-space portrait of the system. Based on this
representation of Gg(x, z'), a closed-path representation of the density of states has
been derived. Further, the semiclassical quantization condition may be expressed in
terms of selected combinations of cycles of the graph (permutation cycles), generalizing
the Bohr—Sommerfeld quantization applicable 10 the case N = 1.

Two applications, the semiclassical wavepacket autocorrelation function and the
density of states of a disordered potential demonstrate the usefulness of this approach
for different phenomena and for a wide range in the number of wells,

Appendix A. Results from uniform semiclassical mechanics

The uniform formulae for the barricr reflection cocllicient and scattering phase shift
can be found by mapping the barrier onto the inverse parabola [15,1]. For energics
E <V, = V(x,,,) one has two real t}lming poi{lts Ty T For energies E >
Viaxs however, therc are two complex-conjugate turning points z ,z_.

For E > V,,, the rcal above-barrier reflection point . is implicitly defined via

/dl k(z) = %(_/:m"dzk(z) + f:m"dz k(z)) (A1)

with (complex) wavenumber &(z) = /2m[E — V(z)]/h
The semiclassical reftection amplituc p and phase shift ¢ of a barrier are defined
via the mnnelling integral

L [T ek 10r B Vi
e(E) = ; i
-—;] dz k(z) for B>V, .

+
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namely
e—7r€
A8 = e (A2)
and
#(E) = arg[[(L +i€)] —elne] + €. (A3)

Appendix B. Basic graph-theoretical concepts

Basic definitions and concepts of graph theory may be found in [13,14]. A finite,
directed greph G = (V, E) consists of a set of vertices V = {1,...,n} and a set
of ordered pairs E = {(%,j),...} the (direcied) edges of the graph. A path ~;_;
of length m (written as |+, ;| = m) which joins the vertices ¢ and j is written as
Yij = (tky ...k, 7). The pairs (4, k), (ky, kp), .. -y (Kpy_y,7) have to be edges
of the graph. Mareover, v, _; is called closed, if 1 = j.

A weighted graph is characterized by additional (complex) weights w(7, j) of the
edges (7, 7). It can be represented by its weighted adjacency matrix A, which is defined
via A;; = w(i, j) if (¢,7) is an edge of the graph. The matrix element A,; is set to
zero if the edge (z,;) of the graph is missing. The common adjacency matrix used in
clementary graph theory is given by unit weights, w(i, 7) = 1if (4,7) € E. Finally,
the weight w(~y;_,;) of a path is the product of the weights of the edges of the path,

w('yi_.j) = w(z, k‘l)’LD(k‘l,k‘z) . ’lD(km_l,j) .

The weighted adjacency matrix .4 can be used to determine sums of weights of
paths. Therefore, recall the definition of matrix-multiplication,

n

(A™) = D A Ak, A, (BI)

kl'...,km_lzl

A summand in (B1) is non-zero only if the corresponding path ~,_ . =
(iky...k,,_17) of length m exists in the graph. In this case the summand is equal
to the weight of the path. Therefore,

(-Am)ij= Z w(’)’i—.j) (B2)

Yi—j
Ve jl=m

the summation being extended over all paths ~,;_, j of length m. The sum of the
weights of all paths «;_,; is given by

ST win) = DA™ =1 - A7) - 6y (B3)

Yim g

In section 2 use is made of this equivalence to express the inverse of the matrix
(1 — A) as a sum over paths of the corresponding graph.
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